e-VLBI Networking Challenges

Paul Boven
What is JIVE?

A collaboration of the major radio-astronomical research facilities in Europe, China and South Africa

Operate the EVN correlator and support astronomers doing VLBI.

A 3 year program to create a distributed astronomical instrument of inter-continental dimensions using e-VLBI, connecting up to 16 radio telescopes
Radio Astronomy

Gamma Rays, X-Rays and Ultraviolet Light blocked by the upper atmosphere (best observed from space).

Visible Light observable from Earth, with some atmospheric distortion.

Most of the Infrared spectrum absorbed by atmospheric gasses (best observed from space).

Radio Waves observable from Earth.

Long-wavelength Radio Waves blocked.
Radio Astronomy

- Sun
- Milky Way
- Supernovae and their remnants
- Galaxies
- Active Galactic Nuclei
- Black Holes (candidates)
- Spacecraft

M33 in optical and radio

Image courtesy NRAO/AUI and NOAO/AURA/NSF
Radio vs. Optical astronomy

The imaging accuracy (resolution) of a telescope related to its wavelength and diameter: \[\theta \approx \frac{\lambda}{D} \]

Hubble Space Telescope:
\(\lambda \approx 600\text{nm} \) (visible light)
\(D = 2.4\text{m} \)
\(\theta = 0.1 \text{ arcsecond} \)

Onsola Space Observatory:
\(\lambda = 6\text{cm} \) (5GHz)
\(D = 25\text{m} \)
\(\theta = 600 \text{ arcseconds} \)

Moon: 3x3 pixels
Very Long Baseline Interferometry

- Create a huge radio telescope by using telescopes in different locations around the world at the same time
- Resolution depends on distance between dishes
- Sensitivity on dish area, time and bandwidth
- Requires atomic clock stability for timing
- Processed in a special purpose super-computer: Correlator, 16x 1024Mb/s
Very Long Baseline Interferometry

Latency: 2 weeks
Latency: 150ms

“Never underestimate the bandwidth of a station wagon laden with computer tapes hurtling down the highway”
(Andy Tanenbaum)
Very Long Baseline Interferometry

- Initially (1990) we used large single-reel tapes
- Then came harddisk-packs
- And now: e-VLBI
Why e-VLBI

• Quick turn-around
• Rapid response
• Check data as it comes in, not weeks later (You can’t redo just 1 telescope)
• More bandwidth
• Logistics (disks damaged/delayed/deleted...)

CygX-3
• Star + black hole
• Flares irregularly
• Timescale: days
• Left: 2 weeks late
• May: Observed flare with e-VLBI
e-VLBI observation of SN2007gr

- Supernova in August 2007
- This type of SN expands very rapidly
- With e-VLBI we could observe it in early September
- Look for: Jets, shell, neutron star, kick
- Millions of lightyears away, very faint and small
- Detection, sent Astronomical Telegram
Networking challenges

e-VLBI is:

- High Bandwidth: > 1 Gb/s
- Long Distance: Worldwide
- Near real-time
- Long duration: 12 hours
- But a little packet loss is OK
- Has to work with world-wide installed base (2.4 kernels a.o.)
Network Overview

<table>
<thead>
<tr>
<th>Telescope</th>
<th>Bandwidth</th>
<th>RTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheshan</td>
<td>512 + 622 LP</td>
<td>180ms / 354ms</td>
</tr>
<tr>
<td>ATNF (2x)</td>
<td>2x 1Gb/s LP</td>
<td>343ms</td>
</tr>
<tr>
<td>Arecibo</td>
<td>512Mb/s VLAN</td>
<td>154ms</td>
</tr>
<tr>
<td>TIGO</td>
<td>95Mb/s</td>
<td>150ms</td>
</tr>
<tr>
<td>Medicina</td>
<td>1Gb/s LP</td>
<td>29.7ms</td>
</tr>
<tr>
<td>Onsala</td>
<td>1Gb/s</td>
<td>34.2ms</td>
</tr>
<tr>
<td>Torun</td>
<td>1Gb/s LP</td>
<td>34.9ms</td>
</tr>
<tr>
<td>Jodrell Bank</td>
<td>2x 1Gb/s LP</td>
<td>18.6ms</td>
</tr>
<tr>
<td>WSRT</td>
<td>1Gb/s Dark Fiber</td>
<td>0.57ms</td>
</tr>
<tr>
<td>Effelsberg</td>
<td>1Gb/s (10G)</td>
<td>13.5ms</td>
</tr>
</tbody>
</table>
The current e-VLBI network

Connected stations and other EVN members
JIVE Network Setup

Legend

- **10 Gb/s fiber**
- **1 Gb/s fiber**
- **1 Gb/s RJ–45**
- **1024 Mb/s Serial links**

Network Components:
- **Radio Telescopes**
- **JIVE Correlator**
- **WSRT**
- **SURFnet**
- **GEANT**

Connections:
- 5Gb/s IP connection
- 16x SURFnet lightpaths
- Internal switch/router
- External switch/router

Network Diagram:
- JIVE Network Setup diagram with various network components and connections.
Lightpaths

- Dedicated point-to-point circuit
- Based on SDH/Sonet timeslots (NOT a lambda)
- Stitched together at cross-connects
- Guaranteed bandwidth
- But also: a string of SPFs.

JIVE Lightpath status

<table>
<thead>
<tr>
<th>Lightpath</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>C17 (WSRT)</td>
<td>Red</td>
</tr>
<tr>
<td>C10 (Sheshan)</td>
<td>Purple</td>
</tr>
<tr>
<td>C9 (ATCA)</td>
<td>Orange</td>
</tr>
<tr>
<td>C8 (Medicina)</td>
<td>Blue</td>
</tr>
<tr>
<td>C7 (Cambridge)</td>
<td>Green</td>
</tr>
<tr>
<td>C5 (Parkes)</td>
<td>Red</td>
</tr>
<tr>
<td>C4 (Jodrell Bank)</td>
<td>Green</td>
</tr>
<tr>
<td>C1 (Torun)</td>
<td>Red</td>
</tr>
</tbody>
</table>

- e-VLBI
TCP behaviour

1 seg/RTT = 1500B/354ms = 33kb/s

Shanghai to JIVE
TCP-BIC stacks
622Mb/s lightpath to HK

Apx. 25 packets lost in 5 minutes
Achieved only 33Mb/s

At large RTT, TCP cannot recover from packet loss
TCP startup/recovery

Australia to JIVE, 343ms

BIC and RENO stacks

3x 1Gb/s lightpath

Data sent at 64Mb/s

At large RTT, TCP takes a while to get up to speed
TCP Research

• Mirror port (span)
• tcpgrok.c - analyze TCP
• eVLBI: RTT up to 354ms
• Window Size
• SACK-bugs
• Tuning defeats fairness
• Lightpath connections
• Conclusion: UDP
UDP surprises

• You must prevent bursts - evenly space packets
 • Timing packets costs CPU
 • Cannot ‘sleep()’ because of 100Hz granularity in 2.4 Linux kernels.
• One-way lightpath UK → JIVE
 • UDP to the rescue:
 • Manually set our MAC in their ARP table
• Used in observation of SN2007gr Supernova
UDP surprises

• Network switches learn MAC addresses by flooding
• Then listening for a reply - but our UDP is one-way
 → Run a ping to all receiving servers
• When a port goes down (e.g. crash):
 Switch forgets the MAC and starts flooding!
• Really a problem at 512Mb/s operations
• Static-Mac didn’t help (bug in switch)
• 16 servers, each now has a /30
The 1Gb/s speedbump

• VLBI (tape based) comes in fixed speeds, power of 2: 128Mb/s, 256Mb/s, 512Mb/s - and 1024Mb/s

• 1024Mb/s > 1Gb/s! (with headers it’s more like 1030)

• Dropping packets works but is sub-optimal

• Dropping ‘tracks’ to <1Gb/s: Takes a LOT of CPU work

• Lightpaths come in ‘quanta’ of 150Mb/s, but Ethernet doesn’t
The Trouble with Trunking

• Standard trunking: LACP (802.3ad)
• Uses a hash of source/destination MAC, IP and/or Port to choose outgoing port
• This is to prevent re-ordering
• A single TCP/UDP stream will use only 1 link member!

• Recent Linux kernels come with bonding, ‘ifenslave’
• Round Robin traffic distribution
• Keep both halves in separate VLANS/Lightpaths as switches in between only speak LACP

“Do NOT cross the streams!”
The Trouble with Trunking

- iperf test using UDP
- Bonding driver
- To SURFnet, we didn’t have 10G yet.
- Conclusion: bonding works well enough for eVLBI (1024Mb/s)
- But not as good as expected
No Trouble with Trunking!

• iperf gets really confused by re-ordering of packets
• Wrote a simple re-implementation for UDP
• Store S/N to track re-ordering, post-process

No packet loss even at 1830Mb/s
• No re-ordering below 1100Mb/s
• Little re-ordering below 1710Mb/s
CWDM from WSRT to JIVE

Much cheaper than upgrading to 10Gb/s

Legend:
- 3x 1 Gb/s CWDM
- 10 Gb/s CX4
- 1 Gb/s fiber
- 1 Gb/s RJ-45
- 1024 Mb/s
- Serial links

16x Mark5 server

10 Gb/s CX4

3x 1 Gb/s CWDM

LOFAR

Cisco 3750

JIVE Correlator

34km dark fiber

External switch/router

Cisco 3750

LOFAR

WSRT
All the colours of the rainbow...

... and then some.

SX: 850nm
1610nm
ZX: 1550nm
LX: 1310nm

1470nm
1550nm
1510nm
1570nm

... and then some.
Cacti
http://graphs.jive.nl

- Cacti is an open-source network management tool
- Records SNMP counters
- Public access website
- Records once every minute
- 64 bit counters
- Secure SNMPv3
A year in graphs

2007-06-25: 6x 256Mb/s
Calibrators near binaries

2007-09-06: 6x 256Mb/s
SN2007gr

2007-08-28: 6x 256Mb/s
Apan Demo

2007-10-09 3x 1Gb/s
Test session
A year in graphs (2)

2007-10-07: 3x 512Mb/s ATNF SN1987a

2007-12-11: 5x 917Mb/s Fringes on all baselines

2008-01-21: 6x 970Mb/s (1:22 packet drop rate)

2008-01-24: 3x 970Mb/s (1:22 with all headers)
2008-02-05: 6x 128Mb/s
Test with Arecibo

2008-04-01: 7x 970Mb/s
Test with Effelsberg

Yesterday: 6x 512Mb/s: 2 observations of 12 hours
Yesterday’s observations

- Two colliding galaxies
- Many new large stars formed
- Large stars burn up quickly
- And turn into supernovae
- Possibly several / year
- Follow-up observations

Xray - binary (on watchlist)
- Star + neutron star / black hole
- Matter from star falls onto companion
- Causes flare
- ‘Triggered’ observation
- Rapid response use of e-VLBI
Future challenges

• New telescopes
 • Yebes, Spain
 • Sardinia, Italy
 • VSOP (Space)

• Telescopes in unconnected places
 • Hartebeesthoek, South Africa
 • Urumqi, China
 • Noto, Italy

• Higher bandwidths
 • This requires a new correlator...
 • 4 Gb/s with new telescope backends
 • 30 Gb/s - Merlin (UK)
Questions?