SCARIE FABRIC: Building a distributed software correlator for e-VLBI Nico Kruithof, Yurii Pydoprihora, Mark Kettenis, JIVE Marcin Okon, Dominik Stoklosa, PSNC Damien Marchal, University of Amsterdam

SCARIe FABRIC

Starting Point

C++ implementation of the SFXC correlator used for the Huygens probe tracking.

Algorithm developed by Sergei Pogrebenko.

- FX correlator
- Narrow-band, high spectral resolution
- Fractional bit-shift before fringe rotation
- Largely unoptimized
- Correlator core only

Design Decisions

- Parallelisation in both subbands and time.
- All baselines for a single subband processed on a single cluser node.
- Further course grained parallelisation (in time only) to distribute over multiple clusters.
- Input node (one per station)
- Correlator node (as many as feasable)
- Output node
- Manager node

Design Decisions

Current State

- VEX-driven, with small JSON-based control file specifying correlation parameters.
- Modular.
- Parallelized using MPI.
- Scales from SMP machines to largish clusters.
- Integrated delay model based on CALC 10.
- All subbands processed, both LSB and USB, crosscorrelations.
- Takes Mark4 (Mark5A) and Mark5B input data.
- Output data format that includes (some) metadata.

Validation

• Comparison with the Mk4 Hardware Correlator

Jun 16, 2008

SCARIe FABRIC

Slide #: 6

FTP Fringe Tests

- Cluster running NICT correlator broke down in May 2007
- SFXC was used ever since

Show plots

	Auto correlation				Cross correlation												
	Ef	Nt	Mc	On	Ef-Nt	Ef-Mc	Ef-On	Nt-Mc	Nt-On	Mc-On							
CH01, 2203.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>34.02</u>	<u>45.62</u>	17.38	<u>20.74</u>	<u>10.95</u>	<u>12.62</u>							
CH02, 2219.99 MHz, USB, Rcp	<u>A</u>	A	A	A	<u>30.6</u>	<u>53.39</u>	13.23	<u>26.08</u>	<u>13.67</u>	<u>12.88</u>							
CH03, 2243.99 MHz, USB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>29.94</u>	<u>19.99</u>	16.44	<u>13.75</u>	<u>10.98</u>	<u>4.723</u>							
CH04, 2283.99 MHz, USB, Rcp	A	A	<u>A</u>	A	<u>25.51</u>	<u>53.06</u>	<u>14.29</u>	<u>23.27</u>	<u>12.13</u>	<u>9.903</u>	0.009		Cross	Er vs	. Mc		٦
CH05, 2299.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>35.51</u>	<u>4.39</u>	<u>13.7</u>	<u>2.677</u>	<u>13.71</u>	<u>3.064</u>	0.008 - 0.007 -				•		1
CH06, 2331.99 MHz, USB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>2.304</u>	<u>41.2</u>	<u>11.97</u>	<u>2.685</u>	<u>2.646</u>	<u>12.37</u>	0.005						-
CH07, 8211.99 MHz, LSB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>86.87</u>	<u>144.1</u>	<u>37.35</u>	<u>26.65</u>	<u>5.897</u>	<u>10.25</u>	0.005						1
CH08, 8211.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>112.5</u>	<u>208.6</u>	<u>46.89</u>	<u>33.62</u>	<u>6.784</u>	<u>12.25</u>	0.004]
CH09, 8227.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	A	<u>105.7</u>	<u>209.4</u>	<u>41.66</u>	<u>33.51</u>	<u>5.963</u>	<u>12.1</u>	0.002						1
CH10, 8251.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	<u>2.694</u>	<u>4.214</u>	<u>2.609</u>	<u>31.76</u>	<u>5.27</u>	<u>12.23</u>	0.001 - A		manhard	A. Making	-		
CH11, 8315.99 MHz, USB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>85.97</u>	<u>201</u>	<u>38.35</u>	<u>32.83</u>	<u>8.808</u>	<u>14.01</u>	Ŭ0	200	400	600	800 1	1000 1	1200
CH12, 8427.99 MHz, USB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>103.9</u>	<u>192</u>	<u>42.19</u>	<u>38.02</u>	<u>7.186</u>	<u>10.66</u>							
CH13, 8499.99 MHz, USB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>92.58</u>	<u>199.3</u>	<u>42.48</u>	<u>37.24</u>	<u>6.661</u>	<u>13.43</u>							
CH14, 8539.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	A	<u>A</u>	<u>80.98</u>	<u>201.6</u>	<u>44.96</u>	<u>28.93</u>	<u>8.184</u>	<u>14.69</u>							
CH15, 8579.99 MHz, LSB, Rcp	<u>A</u>	A	<u>A</u>	A	<u>33.49</u>	<u>141.8</u>	<u>35.61</u>	<u>8.895</u>	<u>3.097</u>	<u>12.05</u>							
CH16, 8579.99 MHz, USB, Rcp	<u>A</u>	<u>A</u>	<u>A</u>	<u>A</u>	11.14	182.4	42.42	<u>3.811</u>	<u>3.607</u>	<u>14.92</u>							

Post Processing

- JIVE uses j2ms2 to convert hardware correlator output into MeasurementSet.
- j2ms2 has been adapted to accept the SFXC output format.

Benefits:

- Standard analysis tools can be used.
- Translation into FITS through standard pipeline (skipping some steps).

The Bigger Picture: FABRIC

How to get things on the Grid?

- Workflow Manager (PSNC)
- VLBI Grid broker (PSNC)
- Web Services (SOAP)
 - Vex2ccf: Creates control file template from VEX
 - Data providers: Provides chunks of data and transfers them to GridFTP servers.
- Staged correlation (uncorrelated data hits disk)

The Picture

Jun 16, 2008

SCARIe FABRIC

Slide #: 10

Advanced Networking: SCARIe

- DAS-3 cluster
- Distributed over 5 locations
- Multiple 10 Gb/s access links
- 1 Gb/s ethernet interconnect
- 10 Gb/s Myrinet interconnect
- Starplane: Usercontrollable optically switched network (DRAC) between locations.

SCARIe FABRIC

Benchmark

- 60 dual-core, dual-CPU machines
- 4 stations, 256 Mb/s, 1024 spectral channels per subband at 54% of real time
- Bottleneck: Conversion of input data
- Dedicated input nodes effectively use only 1 core

AutoBAHN

- JRA within GEANT2 devloping a bandwidth-ondemand facility across domains
- Being deployed by NRENs of Greece, Ireland, Poland and Croatia, using the GEANT2 testbed
- Interfaces to other BoD-systems being developed (Internet2, DRAC).
- Two ways of making reservations:
 - Interactive through web interface
 - Using a webservice

AutoBAHN demo

Conclusions

- Argument reduction for (co)sine functions is computationally expensive.
- Interoperability of web services is a major issue.
- Bandwidth-on-demand looks promising.

